宙解码” 微信公众平台,是广大宇宙爱好者的草根媒体平台。
在这里,我们将伴随大家一起探索宇宙深处的奥秘。
宇宙起源,黑洞,虫洞,多维空间,相对论,量子力学,地外文明,迷失古迹,不解之谜,科技前沿。
从宏观到微观,从科技到科幻,我们一一为您呈现!
欢迎广大宇宙爱好者持续关注我们微信平台!
美国夏威夷凯克天文台口径10米级凯克望远镜
口径10米的凯克望远镜 凯克天文台位于美国夏威夷州的莫纳克亚山4145米的顶峰,拥有世界上口径最大的光学/近红外线望远镜——凯克望远镜。凯克望远镜由两台相同的望远镜组成,每台口径都是10米,由36片口径1.8米的六角形镜片组合而成。 由一个叫凯特的商人赞助,1991年做好的凯特一大概花了9000万美元,1996年建成的凯特二花了7000万美元。
由于当今技术不可能实现单片望远镜镜面口径超过8.4米,因此凯克望远镜的镜面由36块六边形分片组合而成。凯内望远镜巨大的镜面使它使用起来非同一般,不只是因为它的大尺寸,还因为它是由36个直径为1.8米的六边形小镜片组成的。凯克望远镜开创了基于地面的望远镜的新时代。,后者在前几十年内是世界上最大的望远镜。 每架凯克望远镜的架台都是经纬仪的设计,大量的计算机分析得以使用最少的钢材获得最大的强度,每架望远镜的重量约为270吨。在望远镜上的每个接合处,都由非常强固的钢架结构支撑,并由可翘曲的鞔具系统保持稳定。望远镜安装有主动光学系统,在观测时,联结在电脑的传感器和控制系统,能调整每一片镜片和相邻镜片的位置偏差达到4毫米的准确性。每秒两次的调整可以有效的矫正来自重力所造成的变形。
每架凯克望远镜都装有自适应光学系统,能够补偿大气抖动的影响。另外,凯克Ⅰ和凯克Ⅱ还可以做为凯克干涉仪;相隔85米的距离,使它们联合作业时在特定方向上的解析力相当于口径85米的单一望远镜,比得上其他天文干涉仪的解析力,像是距离200米远,但没有干涉测量图能力的VLTI。 凯克天文台由为研究天文而成立的加利福尼亚协会管理,理事来自加州大学和加州理工学院的非营利组织。在1996年,美国国家航空航天局加入成为天文台的一个伙伴。望远镜的基地是由总部设在檀香山的夏威夷大学向当地土著承租的。私人的W. M. 凯克基金会赞助了一亿四千万美金建造望远镜。凯克天文台的总部设在夏威夷的卡姆艾拉(Kamuela),望远镜的使用时间由工作伙伴共同分享。加州理工学院、夏威夷大学和加州大学受理自家研究员的提案,美国国家航空航天局则接受来自全美国各地研究人员的企画案,美国国家光学天文台(NOAO)受理来自世界的研究人员的提案。
2001年3月12日,两架凯克望远镜开始用于光干涉观测,成功观测了位于天猫座的恒星HD61294,其等效分辨率相当于一台口径85米的望远镜。
美国第一架多镜面望远镜(Multiple Mirror Telescope,缩写为MMT)
1971年美国开始研制第一架多镜面望远镜(MMT),是史密松森研究所和亚利桑那大学共同建造的一台口径为6.5米的光学望远镜,位于美国亚利桑那州图森市以南60公里的霍普金斯山的山顶1979年运转,主要用作天体的红外辐射观测。这架望远镜由六个口径各为 1.8米的卡塞格林望远镜组成。六个望远镜绕中心轴排成六角形,六束会聚光各经一块平面镜射向一个六面光束合成器,后者把六束光聚在一个共同焦点上。组合后的口径相当于 4.5米。光轴上有76厘米卡塞格林望远镜。它除用于导星外,主要用来发出检测六个镜筒的光学系统的激光。每个镜筒内的副镜可受控而作微小的转动和伸缩,以校正被激光及其硅检测器检出的失调量。这种能随时对光束进行校正的光学技术称为“主动光学”。六个镜筒的星像既可以互相重合,也可以沿恒星摄谱仪狭缝排成一行以提高星光的利用率。VLT采用了更为先进的光学干涉技术,组成它的4个8.2米单镜既能单独使用,又能组合起来,达到一个16米口镜望远镜的集光力和分辨力。
美国斯隆2.5米数字化巡天望远镜
斯隆2.5米数字化巡天望远镜 (英语:Sloan Digital Sky Survey,缩写为SDSS) “斯隆数字天空勘测计划”的2.5米望远镜位于美国新墨西哥州阿柏角天文台。进行的红移巡天项目。该项目开始于2000年,,计划观测25%的天空,获取超过一百万个天体的多色测光资料和光谱数据。斯隆数字化巡天的星系样本以红移0.1为中值,对于红星系的红移值达到0.4,对于类星体红移值则达到5,并且希望探测到红移值大于6的类星体。
2006年,斯隆数字化巡天进入了名为SDSS-II的新阶段,进一步探索银河系的结构和组成,而斯隆超新星巡天计划搜寻Ⅰa型超新星爆发,以测量宇宙学尺度上的距离。 2008年10月31日,SDSS-II发布了最后一次数据。
斯隆数字化巡天第三期工程SDSS-III已经于2008年7月启动,将持续至2014年。
该望远镜拥有一个相当复杂的数字相机,望远镜内部是30个电荷耦合器件 (CCD)探测器。斯隆望远镜使用口径为2.5米的宽视场望远镜,测光系统配以分别位于u、g、r、i、z波段的五个滤镜对天体进行拍摄。这些照片经过处理之后生成天体的列表,包含被观测天体的各种参数,比如它们是点状的还是延展的,如果是后者,则该天体有可能是一个星系,以及它们在CCD上的亮度,这与其在不同波段的星等有关。另外,天文学家们还选出一些目标来进行光谱观测。
日本8.2米昴星团望远镜
1991年,日本国家天文台在美国夏威夷莫纳克亚山开始建造昴星团望远镜(Subaru)。昴星团望远镜的口径为8.2米的望远镜,昴星团望远镜有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成像质量;二是可实现0.1〃的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。它于1999年1月正式开始进行科学观测。昴星团望远镜是一台位于美国夏威夷毛纳基山天文台的口径为8.2米的望远镜,隶属于日本国家天文台,是该组织最大的望远镜设备。该望远镜以著名的疏散星团——昴宿星团命名,于1991年4月开始建造,1999年1月正式开始进行科学观测。 高:22.2米 重量:555公吨。直径:8.2米(世界最大单一主镜)厚度:20厘米。镜子重量:重量:22.8公吨,材质:ULE(低膨张型玻璃,焦距:15米,焦点(有四个观测焦点)主焦点:F 2.0(装有集光器)
欧洲口径4.1米的VISTA可见光和红外巡天望远镜
VISTA(可见光和红外巡天望远镜)是一个主镜口径4.1米焦长12.1米,副镜口径1.24米,位于[url]http://帕拉纳尔天文台[/url]在[url]http://智利[/url] 阿塔卡马沙漠。它是由[url]http://欧洲南方天文台的[/url]运作,2009年12月11日。Vista是望远镜在红外波段工作的一项调查,是迄今为止最大的红外观测望远镜,专门测量在0.85——2.3微米红外波段。望远镜只有一台仪器:VIRCAM,Vista的红外相机。这是一个3吨重的相机,包含16对红外光敏感的特殊探测器,相当于67万像素的数码相机。观测波长长于人眼可见的。使用Vista的数据,天文学家将能够创造出一个约5%,整个观测宇宙的三维地图。Vista将是一个发现远程类星体和星系和星系团的演化研究的有力工具这将有助于找到非常遥远的星系团探测暗能量的性质。
欧洲南方天文台甚大望远镜(VLT)
2001设在智利拉塞雷纳附近的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。欧洲南方天文台自1986年开始研制。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1〃,跟踪精度为0.05〃,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。 坐落于智利塞罗-帕拉纳山上,它们可以单独操作,或者形成一个甚大望远镜干涉仪。甚大望远镜所装配的仪器可提供详细的观测资料,捕捉十亿分之一秒的星体运动变化。这种联合式天文学观测能探测到比人体肉眼可见光暗40亿倍的宇宙光线。
西班牙10.4米的“加那利大型望远镜”(GTC)
西班牙的望远世界上最大单体光学红外望远镜于7月13日开始投入使用。它有助于人类在外太空搜寻类似地球的行星,并为解释生命起源提供线索。GTC主镜于2009年4月完成制造。2009年7月31日正式落成 据英国《卫报》13日报道,这部望远镜名为“加那利大型望远镜”,位于大西洋加那利群岛的拉帕尔马岛上,最高点——罗奎克·德·罗斯·穆察克斯(Roque de los Muchachos)之上,海拔高度达到7874英尺(约合2400米)。拉帕尔马岛位于加那利群岛最西北角。GTC所在地区几乎没有光污染,天空经常处于无云状态,大气层也较为稀薄,是进行光学和红外线天文学研究的理想之所。主镜由36块更小的六角形镜片构成,拼接在一起好似一个蜂巢。之所以采用这种结构的原因在于:如果只采用一个直径34英尺的反射镜,镜面会因自身重量过高而出现变形。变形导致来自遥远物体的光线发生偏斜,致使最终得出的数据成为“垃圾”。而小镜面则可进行认真校准,能够成为一个无缝光线收集器。除了解决主镜重量这个问题外,多镜片拼接结构也允许GTC采用一项相对较新的观测技术,也就是所说的自适应光学技术。36块小镜片中的每一块都可以移动,能够在一秒钟之内进行上千次非常细微的调整,以校正地球大气层对遥远物体发出光线产生的模糊效应。这项技术以及主镜的巨大尺寸允许GTC发现距地球数百万光年的黑洞和星系,并进行细节达到空前程度的观测。报道说,这部望远镜耗资1.3亿欧元(约合1.76亿美元),耗时7年修建。它结构复杂,由36面镜子组成,直径为10.4米,比位于夏威夷冒纳凯阿火山顶的“凯克”望远镜还大4%。它的目镜可以穿透“分子云”,观察恒星诞生过程,并能找到遥远的星系和类星体。 科学家认为,了解我们这个世界的线索就藏在宇宙尚未看到的部分里,而这部望远镜能有效地捕捉到许久以前在宇宙其他地方发射出的光芒。 这部望远镜的所有者包括西班牙政府和加那利群岛地方政府。代表所有者的一名发言人说,“加那利大型望远镜”可以观测到宇宙中光芒弱、距离远的天体。它可以捕捉新恒星的诞生,更深入地研究黑洞特征,解析宇宙大爆炸后出现的化合物。它的一项主要目标就是,在其他恒星系中找到与地球相似的行星。 美国口径为9.2米霍比-埃伯利望远镜(Hobby-Eberly Telescope,缩写为HET)
霍比-埃伯利望远镜(Hobby-Eberly Telescope,缩写为HET)位于美国得克萨斯州的麦克唐纳天文台,口径为9.2米,是为光谱研究而设计的固定机架球面望远镜。霍比-埃伯利望远镜主镜为11米乘12米的八边形球面,等效口径9.2米,焦距13.08米,集光面积77.6平方米,由91块八边形的子镜面拼接而成,每个子镜面直径1米,厚5厘米,用零膨胀微晶玻璃制成。
望远镜机械结构与地面的夹角是55度,观测过程中主镜固定不动,通过移动安装焦平面上的终端设备对天体进行跟踪。望远镜的主焦点进行成像和低分辨率光谱观测,用光纤将光引导至望远镜下面的中高分辨率光谱仪上。跟踪视场12度,可观测的天空范围是赤纬-10度20分到+70度40分,最长跟踪时间从45分钟到2.5小时不等。为校正主镜重力造成的形变,望远镜安装有主动支撑系统,镜面下方有273个促动器上,每个子镜面下装有3个。望远镜圆顶直径25.8米,高30.34米,圆顶南方有一个高度为27.3米的塔形建筑物,用于调整主镜的曲率中心。
霍比-埃伯利望远镜是美国的德州大学奥斯汀分校、宾夕法尼亚州立大学、斯坦福大学、德国的慕尼黑大学、格丁根大学联合研制的,由麦克唐纳天文台管理和操作,主体部分造价是1350万美元。于1996年建成并投入使用,位于得克萨斯州的福尔基斯山,海拔2026米。由于该望远镜具有极高的性价比,南非仿造了一台口径9.1米的望远镜,称为南非大望远镜,安装在南非苏热尔兰德的南非天文台。
南非仿造的霍比-埃伯利望远镜非洲南部大型望远镜(Southern African Large Telescope),SALT
非洲南部大型望远镜(Southern African Large Telescope),简称为SALT。位于非洲南部的一个小山顶上,它是南半球最大的单光学望远镜。其结构基本与霍比-埃伯利望远镜相同。该望远镜于2005年11月10日,在南非开普敦东北约350公里的荒漠小镇萨瑟兰,南半球最大的天文望远镜——“南部非洲大望远镜”正式启用。来自南非、美国、德国、波兰、英国和新西兰等国家的天文学家均使用过非洲南部大型望远镜。
30米口径“加利福尼亚极大望远镜”(或The Thirty Metre Telescope (TMT) )
30米口径的“加利福尼亚极大望远镜”(California Extremely Large Telescope简称(CELT) 美国加利福尼亚理工学院、加利福尼亚大学和加拿大大学天文学会计划制造一台30米口径的大望远镜可能在2012年使用。三十米口径望远镜隶属于加州理工学院、加州大学以及加拿大大学研究天文协会。工程正在选址中,建在智利或夏威夷莫纳克亚火山山顶都是可能的地点。
顾名思义,该望远镜的主镜直径将达到史无前例的30米!如此巨大的镜面当然只有采用在凯克望远镜上已经取得成功的方法——整个主镜将有492块小镜片组合而成,每个小镜片都能够随时变换形状和位置。三十米口镜望远镜的科学家们希望通过它看到早期宇宙的景象,以弄清恒星和星系真正的形成机制。
即使三十米口镜望远镜获得稳定投资并完成建设而成为世界上最大的望远镜,这个桂冠估计也不能保持很久。因为提议中的欧洲极大望远镜(EELT)预计拥有42米口镜,并且紧随三十米望远镜之后就将开始建设。EELT实际上已经最初设计的微缩版,当初欧洲空间局提议建造一个100米口镜的空前绝后大望远镜( Europe Overwhelmingly Large Telescope)
智利的 美国麦哲伦2 ×6.5米望远镜
麦哲伦望远镜(Magellan Telescopes)是位于智利拉斯坎帕纳斯天文台的2台6.5米口径光学望远镜,是华盛顿卡内基研究所天文台(OCIW)与美国亚利桑那大学、哈佛大学、密歇根大学、麻省理工学院合作建造的,由华盛顿卡内基研究所天文台负责管理运行。其中第一台望远镜以美国天文学家沃尔特·巴德的名字命名,第二台以慈善家兰顿·克莱的名字命名。麦哲伦望远镜是目前最新建造的双体望远镜,两个望远镜相隔200英尺,坐落于智利阿塔卡马沙漠的高处。望远镜的6.5米直径镜面漂浮在高压油薄膜上,其摩擦力很小,小孩便能够推动这个150吨的望远镜。但是没有天文学家想让镜面滑动,因此驱动汽缸和驱动平面可形成1万磅的压力,使镜面保持平稳。
麦哲伦望远镜计划始于1980年代中期,1993年华盛顿卡内基研究所与亚利桑那大学开始建造第一块主镜。1995年12月哈佛大学的加入和1996年2月密歇根大学、麻省理工学院的加入使得该计划有能力建造第二台望远镜。1999年11月,第一台望远镜的主镜从亚利桑那大学史都天文台镜面实验室运抵拉斯坎帕纳斯天文台,2000年9月15日开始观测,同年12月9日正式开始运行。第二台望远镜的主镜于2001年7月运抵目的地,2002年9月7日开始观测。
20米口径的大麦哲伦望远镜(Giant Magellan Telescope,简称GMT)
美国亚利桑那州立大学的“史都华天文台镜子实验室”正在忙着为世界上直径最大的“巨型麦哲伦天文望远镜”赶制第一面直径为8.4米的主观测镜片。将于2016年在位于智利拉斯卡姆帕纳斯地区的卡内基天文台建成并投入使用的“巨型麦哲伦天文望远镜”的主观测镜片,将由7个直径均为8.4米的大型子镜片组成。1个居中,另外6个则环绕在其周围。6个环绕在四周的镜片能够观察到中心镜片不能观察到的任何角度的光线。因此,这种设计令这台望远镜的聚光能力相当于一面直径为25.6米的巨型望远镜,功能是当前最大光学望远镜的4.5倍,成像清晰度将达到“哈勃”太空望远镜的10倍。 研究人员称,“巨型麦哲伦天文望远镜”刷新纪录,成为单一镜片望远镜中直径最大的望远镜,并将镜片的制造技术提升至一个新的境界。之前单一镜片望远镜直径最大的是新皇望远镜(Subaru),其直径超过8米。为了顺利建造这台巨型望远镜,美国的加州卡内基天文台、哈佛大学、史密松天文物理台、亚利桑那州立大学、密歇根州立大学、麻省理工学院、得克萨斯州立大学和得克萨斯农工大学组成了一个联盟。据了解,“巨型麦哲伦天文望远镜”投入使用后,将担负探寻宇宙中恒星和行星系的生成、暗物质、暗能量和黑洞的奥秘,以及银河系的起源等重任 。在建中巨型麦哲伦望远镜的不远处就是早已建成的欧洲甚大望远镜(EVLT),而它的双胞胎兄弟2000年建成的6.5米口镜的麦哲伦望远镜也将和它成为邻居。
美国8.4米 格拉汉姆山顶之上的大型双筒望远镜
这是它的8.4米的镜片打磨中
LBT的第一张影像是NGC891,这个星系位於仙女座,是一个边缘看过去的螺旋形星系,属於Sb型。这个星系距离我们2千4百万光年远。这个星系中,新的恒星诞生与X射线的发射源混合著气体及尘埃盘,与其侧看的图像垂直达数百光年。
大双筒望远镜(Large Binocular Telescope,缩写为LBT)位于美国亚利桑那州的格拉汉姆山国际天文台,是两台架设在同一机架上的口径8.4米的双筒望远镜,等效口径11.8米,空间分辨本领相当于一台22.8米的单镜面望远镜。大型双筒望远镜于2005年10月正式投入观测运行,制作价钱连同一些先进的技术高达1亿2千万美元。它位于美国亚利桑那州格雷厄姆山顶之上,由美国、日本和德国联合研究和使用。
第一个望远镜是于2004年在美国亚利桑那州格雷厄姆山顶上架设,第二个望远镜是从2005年开始安装。 大型双筒望远镜由两个紧紧相邻的望远镜构成,简称LBT,它也证明了双镜头比单镜头效果更好。它们可以分离工作,当合并工作时就像一个单一、更大型的望远镜。两个望远镜的镜头直径均为8.4米,它们提供的分辨率比哈勃的分辨率要高出10倍以上,LBT望远镜是天文望远镜中放大率最强的,其次,镜片由硼硅酸盐材料制造,它能在更小的空间内收集更多的光线,让科学家能看到围绕遥远恒星运行的行星。而且这些蜂窝构造的镜片十分光滑,比普通玻璃镜片更轻,精细加工到30毫微米,比一根头发还要细3000倍。天文学家将通过LBT望远镜看到以前没有看到过的天空,并将能够看到在大爆炸之后的少量形成物质,以及同样还能在某些理想条件下看到其它星体周围的行星。
六国联合制作的口径8米的双子望远镜(GEMINI)
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。 该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。‘
经纬台式大型望远镜先驱-前苏联SAO天文台BAT-6望远镜
经纬台式大型望远镜(俄语::Большой Телескоп Альт-азимутальный,英文:Big Telescope Alt azimuthal,BTA)是由苏联建造的大型望远镜,主镜直径6米,自从其建成之后至1992年凯克望远镜完工,一度是世界上口径最大的光学望远镜。直至今日,它仍然是欧洲大陆上口径最大的光学望远镜。6米望远镜大约由25000个大小部件组成,总重量为850吨,其高度为42米,镜面的支撑钢架重300吨,望远镜的观测室高达44米,由金属制囘作,重量约达1000吨。为建造这一庞然大物,共计花去了16年在其建设过程中创造了许多大型望远镜设计、建造的先例。然而,由于其选址和望远镜的制造质量问题,BTA的实际成像能力一直受到西方天文学家的质疑。1950年,苏联科学院决定建设一台新的大型望远镜以超过5米的海尔望远镜。这台新望远镜的直径被确定为6米,这差不多是单面固体望远镜的最大极限。玻璃毛坯的浇铸准备和多次试烧就花了4年多的时间。再用金刚刀切去28吨余料,一个重42吨、厚65厘米的主镜才基本形成,单就做金刚刀就用了3公斤的钻石,之后将基本形成的主镜放在有3层隔墙的恒温车里研磨加工,其精度是百万分之一厘米。最后再用特大型镀膜机镀膜。同时,总体的建设安装都非常的复杂。俄罗斯科学家为6米望远镜的建设做出了智慧、艰苦的贡献。
在其之后建设的口径更大的望远镜,都采用了多面镜片拼接的工艺。该望远镜的镜片由列宁格勒光学机械联合体,也就是著名的LOMO制造。主镜直径6米,焦距为26米,结构质量800吨,高度约为42米。用于支撑的支架和容纳望远镜的观测室,重量也分别达到了300吨和1000吨。与之前的大型望远镜相比,经纬台式大型望远镜采用了许多新技术。首先,正如其名字所示,它使用的是经纬台式架台,与赤道仪相比结构简单、造价低。但定位复杂,需要依靠计算机装置辅助。它还使用了水平式焦点结构,这种结构使得主镜所聚焦的成像被反射到镜筒侧面。这样光学胶片或是CCD装置可以装置在主镜外,利于减轻总体的重量。换句话说,经纬台在追踪星体时,其控制系统必须有足够的记忆容量,在各星体不同的经纬度时,给予不同的驱动指令。在那电脑体积大如厂房的五、六十年代,有谁敢冒失败的风险,来进行这世界第一的望远镜建造计划?前苏联就不计成本地,为BTA-6米镜发展了一套编号M222的计算机控制系统,记忆容量为16,000byte,在操控中实际使用量为4,000byte。因此,BTA-6米镜证明了经纬台大望远镜的可行性。 danshi 但是作为先驱,仍然有先驱的献身精神.虽然其口径非常巨大,但是实际成像能力和科研能力却并不高。首先,巨大的单一镜片非常沉重。受自身重量和热涨冷缩的影响,镜片很容易发生变形。实际上,1975年所安装的主镜在使用后不久就发生了破裂,结果导致其成像能力只有设计值的6成左右。1978年苏联又用了一面新的派热克斯玻璃替换了它。其选址也并不利于天文观测,该天文台所在地常有大风,温度变化也极为不稳定。近年来,该望远镜也更换了膨胀率更低的玻璃并加装了CCD成像系统。
虽然BTA6米镜在天文学研究上,受到台址自然环境的影响(温差、强风)与经济环境的限制,而未能有重大的发现,但是仍无损其大望远镜「先知」的地位。
关注【宇宙解码】公众平台的3种方法
1. 点击文章标题下蓝色字“宇宙解码”进行快捷关注
2. 点击屏幕右上角----查看公众号----关注
3. 搜索公众号【宇宙解码】或【ts-yzjm】(探索-宇宙解码的意思)添加关注