CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。信息之间的先后顺序由发出信息者的优先级确定。优先级在通讯协议中已经做出规定,每条信息里都有发信者的地址编码;
通讯中的信息编码,都有相应的通讯协议予以明确规定。谁发出什么样的代码提供哪些类型的信息,主要依据是供需双方的约定。比如下面表格中的电气单元地址编码,就是来自一份整车厂与VCU供应商的技术协议。
CAN故障记录,是维修调试人员最好的小帮手。下图是通讯协议中对故障代码的规定,常见的故障类型都位列其中,只要对照协议表格,大家都可以读懂故障记录了。
比较例外的是充换电相关的系统,由于通用性的强烈需求,通讯协议需要统一,有国家标准予以统一编码(下文列举了相关国标)。
2.2.1 VCU与动力电池系统
动力电池是纯电动汽车动力的唯一来源。VCU与电池管理系统(BMS)通过整车CAN总线进行信息交互。
动力电池包实时监测并上报给VCU参数包括:总电流,总电压,最高单体电压,最低单体电压,最高温度,电池包荷电状态SOC(State of Charge),某些系统还监测电池包健康状态SOH(State of Health)。
VCU发送给电池包的命令包括充电,放电和开关指令。
充电,在最初的充电连接信号确认后,整车处于禁止行车状态,VCU交出控制权。整个充电过程由电池管理系统(BMS)和充电机共同完成,直至充电完成或者充电中断,车辆控制权重新回到VCU手中。
放电,VCU根据驾驶员意图,推算出车辆的功率需求,换算成电流需求,发送给BMS。BMS根据自身SOC,温度和系统设计阈值,确定提供的电流值。
当热管理系统需要使用电池包以外的资源时,需要电池包与VCU协调处理让管理过程,比如压缩机系统,冷却液循环系统等的开启关闭。如果热管理过程只涉及电池包内部电气,比如开启内置的PTC、加热膜加热,或者开启风扇降温,则信息只在电池包内部处理即可,不需要与VCU沟通。
开关指令,在充放电开始之前,VCU控制整车强电系统是否上电,通过控制电池包的主回路接触器实现。在车辆运行过程中,遇到突发状况,VCU酌情判断是否闭合或者断开主回路接触器。
2.2.2 VCU与电机及其控制器
VCU向电机控制器发送的指令,包含三个部分的描述,电机使能信息、电机模式信息(再生制动,正向驱动,反向驱动)以及相应模式下的电机转矩;
电机控制器向VCU上报电机和控制器的各种参数及故障报警信息,主要参数包括电机转速,电机转矩,电机电压和电流。
2.2.3 VCU与充电系统
充电系统包括车载充电机,非车载充电机,广义上还包含换电系统。充换电系统(这里的“充”主要是指非车载充电机),出于最大通用性的考量,需要一套统一的通讯协议。下列国标都是目前的最新版本。
GBT 27930-2015 电动汽车非车载传导式充电机与电池管理系统之间的通信协议
GB∕T 32895-2016 电动汽车快换电池箱通信协议
GBT 32896-2016 电动汽车动力仓总成通信协议
标准统一规定了充电流程,包括具体的通讯编码,通讯语句的内容。
以充电枪与车辆上的充电接口的物理连接为开端,整个充电过程中的信息互换都在电池管理系统和充电机之间进行,不再通过VCU。
2.2.4 VCU与制动系统
采用复合制动系统的电动汽车,需要综合考虑液压制动系统,电机制动和防抱死系统(ABS)的协调一致性,进而需要有自己的管理系统,称为制动管理系统(BCU)。BCU可以独立于VCU之外,只通过CAN通讯,也可以把功能集成到VCU内部。
根据制动踏板的开度和开度变化的速度,VCU计算出车辆的制动需求力矩,传递给BCU。BCU根据车辆的具体状态做出具体力矩分配。
车速中等的一般制动,直接切入电机能量回馈制动,以最大数量的回收制动能量;
车速高,驾驶员急踩踏板,需要紧急制动。则BCU会首先启动液压制动系统,待减速状态稳定以后,再引入能量回馈制动,并逐渐加大比例。
行驶在冰雪路面,BCU则会引入ABS,并将其优先级设置为最高,以车辆正常安全行驶为要。
2.2.5 VCU与智能仪表
电动汽车仪表盘,结合传统车原来的布置,国标GB/T 19836-2005 对显示内容提出了要求,如下表所示。
智能仪表,高端和低端的原理区别比较大。我们只以其中一种形式为例。
仪表系统通过CAN总线与VCU相连,从VCU获取需要显示的数据。数据传输进仪表控制器以后,信号处理电路,将信息还原成各个仪表的显示内容。
上一代的指针式仪表,需要以步进电机为媒介,把获得的数据转化成驱动表针旋转的动力。稍微先进一点的液晶显示器,则不需要驱动步进电机这个过程,直接通过信息处理,即可在显示屏上实时显示。下面是一个智能仪表硬件设计框图,仅供获得感性认识。